Search results for "Germ-Free Life"

showing 9 items of 9 documents

Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2.

2016

The symbiotic gut microbiota play pivotal roles in host physiology and the development of cardiovascular diseases, but the microbiota-triggered pattern recognition signaling mechanisms that impact thrombosis are poorly defined. In this article, we show that germ-free (GF) and Toll-like receptor-2 (Tlr2)-deficient mice have reduced thrombus growth after carotid artery injury relative to conventionally raised controls. GF Tlr2-/- and wild-type (WT) mice were indistinguishable, but colonization with microbiota restored a significant difference in thrombus growth between the genotypes. We identify reduced plasma levels of von Willebrand factor (VWF) and reduced VWF synthesis, specifically in he…

0301 basic medicineBlood Plateletsmedicine.medical_specialtyEndotheliumPlatelet AggregationImmunologyBiologyBiochemistry03 medical and health sciencesMiceVon Willebrand factorhemic and lymphatic diseasesInternal medicinevon Willebrand FactormedicineAnimalsGerm-Free LifePlateletThrombusIntegrin bindingMice KnockoutToll-like receptorThrombosisCell BiologyHematologymedicine.diseaseToll-Like Receptor 2Gastrointestinal MicrobiomeTLR2030104 developmental biologymedicine.anatomical_structureEndocrinologyLivercardiovascular systembiology.proteinSignal transductioncirculatory and respiratory physiologySignal TransductionBlood
researchProduct

The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide

2013

The Microbiota Makes for Good Therapy The gut microbiota has been implicated in the development of some cancers, such as colorectal cancer, but—given the important role our intestinal habitants play in metabolism—they may also modulate the efficacy of certain cancer therapeutics. Iida et al. (p. 967 ) evaluated the impact of the microbiota on the efficacy of an immunotherapy [CpG (the cytosine, guanosine, phosphodiester link) oligonucleotides] and oxaliplatin, a platinum compound used as a chemotherapeutic. Both therapies were reduced in efficacy in tumor-bearing mice that lacked microbiota, with the microbiota important for activating the innate immune response against the tumors. Viaud et…

Adoptive cell transferCyclophosphamidemedicine.drug_classLymphoid TissueGram-positive bacteria[SDV]Life Sciences [q-bio]AntibioticsAntineoplastic AgentsGut floraGram-Positive BacteriaArticle03 medical and health sciencesMice0302 clinical medicineImmune systemNeoplasmsIntestine SmallmedicineTumor MicroenvironmentGerm-Free LifeAnimalsCyclophosphamide030304 developmental biology0303 health sciencesMultidisciplinarybiology[ SDV ] Life Sciences [q-bio]Microbiotabiology.organism_classificationAdoptive TransferSmall intestine3. Good healthAnti-Bacterial AgentsIntestines[SDV] Life Sciences [q-bio]medicine.anatomical_structureLymphatic system030220 oncology & carcinogenesisBacterial TranslocationImmunologyCancer researchTh17 CellsImmunologic MemoryImmunosuppressive Agentsmedicine.drug
researchProduct

Gut Microbiota Restricts NETosis in Acute Mesenteric Ischemia-Reperfusion Injury.

2020

Objective: Recruitment of neutrophils and formation of neutrophil extracellular traps (NETs) contribute to lethality in acute mesenteric infarction. To study the impact of the gut microbiota in acute mesenteric infarction, we used gnotobiotic mouse models to investigate whether gut commensals prime the reactivity of neutrophils towards formation of neutrophil extracellular traps (NETosis). Approach and Results: We applied a mesenteric ischemia-reperfusion (I/R) injury model to germ-free (GF) and colonized C57BL/6J mice. By intravital imaging, we quantified leukocyte adherence and NET formation in I/R-injured mesenteric venules. Colonization with gut microbiota or monocolonization with Esch…

0301 basic medicineMaleExtracellular TrapsMesenteric infarctionLipopolysaccharideNeutrophilsGut floraExtracellular Traps03 medical and health scienceschemistry.chemical_compound0302 clinical medicineAcute mesenteric ischemiaVenulesmedicineCell AdhesionEscherichia coliLeukocytesAnimalsGerm-Free LifeLeukocyte RollingMesenteryCells CulturedMice Knockoutbiologybusiness.industryNeutrophil extracellular trapsbiology.organism_classificationmedicine.diseaseGastrointestinal MicrobiomeMice Inbred C57BLToll-Like Receptor 4Disease Models Animal030104 developmental biologychemistryNeutrophil Infiltration030220 oncology & carcinogenesisMesenteric IschemiaReperfusion InjuryImmunologyHost-Pathogen InteractionsFemaleCardiology and Cardiovascular MedicinebusinessReperfusion injuryBacillus subtilisSignal TransductionArteriosclerosis, thrombosis, and vascular biology
researchProduct

Quantitative electron microscopic observations on Paneth cells of germfree and ex-germfree Wistar rats.

1986

Ultrastructural changes of Paneth cells of germfree (Gf) rats which had been inoculated with bacteria-containing feces from conventionally-reared (SPF) rats were quantitatively examined. 12 and 24 h after inoculation, the Paneth cells showed a striking decrease in the number of secretory granules and the occurrence of large vacuoles. Phagosomes containing bacteria were not seen. After 4 days, the secretory granules reaccumulated and smooth-surfaced apical vesicles increased in number. It is discussed that the large vacuoles may be related to membrane-retrieval events following the massive extrusion of secretory granules whereas the apical vesicles appear to serve this function when exocytos…

EmbryologyPathologymedicine.medical_specialtyTime FactorsGolgi ApparatusVacuoleBiologyCytoplasmic Granulesdigestive systemExocytosislaw.inventionlawIntestine SmallmedicineAnimalsGerm-Free LifeIntestinal MucosaCell NucleusGerm-free animalVesicleCell BiologyMolecular biologySmall intestineRatsMicroscopy Electronmedicine.anatomical_structurePaneth cellUltrastructureAnatomyElectron microscopeLysosomesDevelopmental BiologyAnatomy and embryology
researchProduct

DYSMICROBISM, INFLAMMATORY BOWEL DISEASE AND THYROIDITIS: ANALYSIS OF THE LITERATURE

2015

The human body is colonized by a large number of microbes that are collectively referred to as the microbiota. They interact with the hosting organism and some do contribute to the physiological maintenance of the general good health thru regulation of some metabolic processes while some others are essential for the synthesis of vitamins and short-chain fatty acids. The abnormal variation, in the quality and/or quantity of individual bacterial species residing in the gastro-intestinal tract, is called “dysmicrobism”. The immune system of the host will respond to these changes at the intestinal mucosa level which could lead to Inflammatory Bowel Diseases (IBD). This inflammatory immune respo…

Settore MED/12 - GastroenterologiaSettore MED/09 - Medicina InternaLymphoid TissueMicrobiotaProbioticsMolecular MimicryThyroiditis AutoimmuneThiamine DeficiencyInflammatory Bowel DiseasesGastrointestinal TractMiceSettore MED/18 - Chirurgia GeneraleBacterial TranslocationFermentationAutoimmune Thyroiditis Inflammatory Bowel Diseases dysmicrobisAnimalsGerm-Free LifeHumansIntestinal MucosaSymbiosis
researchProduct

Germ-free housing conditions do not affect aortic root and aortic arch lesion size of late atherosclerotic low-density lipoprotein receptor-deficient…

2020

The microbiota has been linked to the development of atherosclerosis, but the functional impact of these resident bacteria on the lesion size and cellular composition of atherosclerotic plaques in the aorta has never been experimentally addressed with the germ-free low-density lipoprotein receptor-deficient (Ldlr(-/-)) mouse atherosclerosis model. Here, we report that 16 weeks of high-fat diet (HFD) feeding of hypercholesterolemicLdlr(-/-)mice at germ-free (GF) housing conditions did not impact relative aortic root plaque size, macrophage content, and necrotic core area. Likewise, we did not find changes in the relative aortic arch lesion size. However, late atherosclerotic GFLdlr(-/-)mice …

0301 basic medicineAortic archMalePathologyaortic rootAortic rootaortic archFunctional impactAorta ThoracicHYPERCHOLESTEROLEMIAMice0302 clinical medicineDeficient mouse610 Medicine & healthMice KnockoutBILE-ACIDSCellular compositionMicrobiotaCHOLESTEROLGUT MICROBIOTAGastroenterologyinflammatory markersHousing AnimalPlaque Atheroscleroticmacrophagessmooth muscle cellsInfectious Diseasesgerm-free030211 gastroenterology & hepatologyFemalelipids (amino acids peptides and proteins)SEXTRIMETHYLAMINEmedicine.symptomMicrobiology (medical)medicine.medical_specialty610 Medicine & healthBiologyMETABOLISMlesion sizeMicrobiologyLesion03 medical and health sciencesINFLAMMATIONmedicine.arterymedicineAnimalsGerm-Free LifeHumanslcsh:RC799-869AddendumMice Inbred C57BLDisease Models Animal030104 developmental biologyReceptors LDLlow-density lipoprotein receptor-deficient mouseageLDL receptorlcsh:Diseases of the digestive system. Gastroenterologyatherosclerosis
researchProduct

Bacteroides vulgatus protects against escherichia coli-induced colitis in gnotobiotic interleukin-2-deficient mice

2003

Abstract Background & Aims: The microflora plays a crucial role in inflammatory bowel diseases (IBDs). Specific pathogen-free (SPF), but not germ-free, interleukin (IL)-2-deficient (IL-2−/−) mice develop colitis. The colitogenicity of commensal bacteria was determined. Methods: Gnotobiotic IL-2−/− and IL-2+/+ mice were colonized with Escherichia coli mpk, Bacteroides vulgatus mpk, or both bacterial strains, or with E. coli strain Nissle 1917. DNA arrays were used to characterize E. coli mpk. Colitis was analyzed by histology and real-time reverse-transcription polymerase chain reaction (RT-PCR) for interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-10, and CD14 messenger RNA (mRNA) expre…

MaleGene Expressionmedicine.disease_causeMicrobiologyFecesMiceInterferonEscherichia colimedicineAnimalsBacteroidesGerm-Free LifeColitisEscherichia coliBacteroidaceaeEscherichia coli InfectionsSpecific-pathogen-freeHepatologybiologyGastroenterologyInterleukinColitismedicine.diseasebiology.organism_classificationEnterobacteriaceaeMice Mutant StrainsSpecific Pathogen-Free OrganismsIntestinesMice Inbred C57BLInterleukin-2FemaleTumor necrosis factor alphamedicine.drugGastroenterology
researchProduct

Age-Related Changes in the Gut Microbiota Modify Brain Lipid Composition

2020

PMCID: PMC6970973; International audience; Understanding the molecular mechanisms underlying the changes observed during aging is a prerequisite to design strategies to prevent age-related diseases. Aging is associated with metabolic changes, including alteration in the brain lipid metabolism. These alterations may contribute to the development of pathophysiological conditions. Modifications in the gut microbiota composition are also observed during aging. As communication axes exist between the gut microbiota and the brain and knowing that microbiota influences the host metabolism, we speculated on whether age-associated modifications in the gut microbiota could be involved in the lipid ch…

Fatty Acid DesaturasesMale0301 basic medicinelcsh:QR1-502Gene ExpressionGut floralcsh:MicrobiologyFatty Acids MonounsaturatedMiceCellular and Infection MicrobiologyAging brain[SDV.BDD]Life Sciences [q-bio]/Development BiologyOriginal Researchchemistry.chemical_classificationFatty AcidsAge FactorsBrainLipidscortexInfectious DiseasesFatty Acids Unsaturated[SDV.IMM]Life Sciences [q-bio]/Immunologylipids (amino acids peptides and proteins)SphingomyelinStearoyl-CoA DesaturasePolyunsaturated fatty acidMicrobiology (medical)medicine.medical_specialty[SDV.IMM] Life Sciences [q-bio]/ImmunologyFatty Acid ElongasesFADS1FADS2030106 microbiologyImmunologyBiologyliverdigestive systemMicrobiology03 medical and health scienceslipidInternal medicine[SDV.BDD] Life Sciences [q-bio]/Development BiologymedicinemicrobiotaAnimalsGerm-Free LifephospholipidagingFatty acidcholesterolLipid Metabolismbiology.organism_classificationGastrointestinal MicrobiomeTransplantation[SDV.AEN] Life Sciences [q-bio]/Food and Nutrition030104 developmental biologyEndocrinologychemistryfatty acid[SDV.AEN]Life Sciences [q-bio]/Food and NutritionFrontiers in Cellular and Infection Microbiology
researchProduct

The Commensal Microbiota Enhances ADP-Triggered Integrin αIIbβ3 Activation and von Willebrand Factor-Mediated Platelet Deposition to Type I Collagen

2020

The commensal microbiota is a recognized enhancer of arterial thrombus growth. While several studies have demonstrated the prothrombotic role of the gut microbiota, the molecular mechanisms promoting arterial thrombus growth are still under debate. Here, we demonstrate that germ-free (GF) mice, which from birth lack colonization with a gut microbiota, show diminished static deposition of washed platelets to type I collagen compared with their conventionally raised (CONV-R) counterparts. Flow cytometry experiments revealed that platelets from GF mice show diminished activation of the integrin αIIbβ3 (glycoprotein IIbIIIa) when activated by the platelet agonist adenosine diphosphate (ADP). Fu…

0301 basic medicineMaleGene Expression030204 cardiovascular system & hematologyvon Willebrand factorlcsh:Chemistrychemistry.chemical_compoundMice0302 clinical medicinePlateletToll-like receptor-2lcsh:QH301-705.5SpectroscopyMice KnockoutbiologyChemistryBrief ReportαIIbβ3General MedicineArteriesComputer Science ApplicationsCell biologyAdenosine DiphosphatePlatelet Glycoprotein GPIb-IX Complexgerm-freeplateletsFemaleType I collagenBlood PlateletsIntegrinPrimary Cell CulturePlatelet Glycoprotein GPIIb-IIIa ComplexCatalysisCollagen Type IInorganic Chemistry03 medical and health sciencesVon Willebrand factormedicineCell AdhesionmicrobiotaAnimalsGerm-Free LifeHumansPhysical and Theoretical ChemistryThrombusSymbiosisMolecular Biologyα<sub>IIb</sub>β<sub>3</sub>Innate immune systemOrganic ChemistryThrombosismedicine.diseaseImmunity InnateToll-Like Receptor 2Gastrointestinal MicrobiomeMice Inbred C57BLAdenosine diphosphateTLR2030104 developmental biologylcsh:Biology (General)lcsh:QD1-999biology.proteinInternational Journal of Molecular Sciences
researchProduct